LAMP-TR-031 TR1-93-09100
CAR-TR-905 IRI-97-12598
CS-TR-3979 MDA9049-6C-1250

January 1999

Object Representation Using
Appearance-Based Parts and Relations

Chien-Yuan Huang,! Octavia I. Camps,’? Tapas Kanungo®

!Department of Electrical Engineering
*Department of Computer Science and Engineering
The Pennsylvania State University, University Park, PA, 16802
camps@whale.ece.psu.edu

3 Center for Automation Research
University of Maryland, College Park, MD 20742-3275

kanungo@cfar.umd.edu
Abstract
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titative experiments illustrating the potential of the representation for successtul object
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1 Introduction

The recognition of general three-dimensional objects in cluttered scenes from two-dimensional
images remains a challenging problem. In particular, the design of a good representa-
tion that is suitable for modeling large numbers of generic objects, and is also robust to
occlusion, has been a stumbling block to achieving success.

A major difficulty in recognizing 3D objects from 2D images is that their appearances
change significantly with the viewpoint. Common approaches to overcoming this prob-
lem are to use viewer-centered representations to describe the objects in terms of their
appearances, or to use object-centered representations and image invariants.

Viewer-centered approaches can be as structured as features grouped into relational
models within aspect views [6, 11], or as loose as appearance-based representations [29]
constructed from collections of images. A major limitation of the appearance-based
approach 1s that it requires isolating the object of interest from the background, and
thus is sensitive to occlusion. In spite of the increased interest in this approach [24, 26],
no satisfactory solution has been found, until now, to handle object occlusion without
limiting the scale of the problem (the number of objects).

Approaches using object-centered representations, such as part decomposition [3, 42,
23], have the potential to cope with both occlusion and large object databases. However,
the definition of parts of generic objects and their image extraction remains a difficult
problem[17].

Dickinson et al. [13] proposed a hybrid approach where objects are described as
combinations of geometric primitives that are represented using aspect graphs. This
approach handles occlusion and can potentially describe a large set of objects in terms
of a few primitives. However, it requires fairly good image segmentation and it is limited
to objects that can be described by primitives of specific types.

In this paper!, we propose a new method of describing the appearance of a 3D object
using parts and spatial relations among these parts. This representation is automatically
learned from a set of training images and is compactly stored as two sets of paramet-
ric manifolds, called Appearance-Based Parts (ABPs) and Appearance-Based Relations
(ABRs). The ABP and ABR manifolds are embedded in low-dimensional subspaces of
two eigenspaces spanned by collections of closed regions and unions of regions, respec-
tively, segmented from the training data using the MDL principle. Since this represen-
tation is learned from segmented images, it is capable of representing free-form objects
and handling segmentation problems similar to the ones encountered during training.
Furthermore, since it is based on local regions rather than global properties, it is robust
to partial occlusion.

The remainder of the paper is organized as follows. The next section discusses pre-
viously proposed object representations and gives the details of the new ABP and ABR
representation. Section 3 presents a relational formalism to perform object recognition
and pose estimation using the new representation. Section 4 describes experiments that
illustrate, qualitatively as well as quantitatively, the usefulness of the new representation.

LA shorter version of this paper appeared in [18].



2 Object Representation

The representation of models is critical to the problem of 3D object recognition and
pose estimation. A good review of work in this area up to 1993 can be found in [20].
More recently, two workshops addressing the specific issue of object representation for
recognition [17, 33] have shown that the problem of designing a “good” representation
remains largely unsolved.

Most 3D object representations for recognition purposes proposed until now can be
classified into three major categories: primitive-, physics-, and appearance-based repre-
sentations.

Primitive-based representations rely on geometric models of objects [2, 12, 14, 19]. In
order to cope with occlusion, decomposition of the object into parts is often used. Binford
[3], for example, proposes a 3D part definition based on function. In this approach, a
divide and conquer method is utilized to decompose complex objects into a structural rep-
resentation. Another example can be found in [42], where Zerroug and Medioni employ
a high-level, volumetric part-based approach where a hierarchical extraction process ap-
plies generalized cylinders to group compound objects from boundaries, surface patches,
and volumetric parts. Although there is general consensus on the fact that part decom-
position can help in overcoming occlusion, there is no agreement on what a part should
be. Furthermore, reliable extraction of parts from 2D image data remains a difficult
problem.

Physics-based representations typically model a shape as a mechanical system sub-
ject to forces reflecting material properties as well as smoothness and image constraints.
These methods have been successtully used for modeling complex objects whose shapes
may vary over time. Examples of this approach are the work of Metaxas [27] and Pentland
and Sclaroff [32, 38]. Metaxas proposed a deformable model by integrating mathemat-
ical methods from geometry, physics and mechanics. In particular, he used Lagrangian
mechanics to convert the geometric parameters of the solid primitive, the deformation
parameters, and the six degrees of freedom of rigid-body motion, into generalized coor-
dinates or dynamic degrees of freedom. Pentland and Sclaroff, on the other hand, used
a finite element method, where the eigenvectors of the finite element model of the shape
were employed to formulate the physical model. However, these methods are better
suited for 3D object recognition from 3D data or 2D object recognition from 2D data.

The appearance of a 3D object in a 2D image depends on its shape, its reflectance
properties, its pose in the scene, and the sensor and illumination characteristics. Earlier
object recognition systems such as PREMIO [8, 9] and the system developed by Chen
and Mulgaonkar [10] used synthetic image segmentations to learn probability models
that were then used to recognize 3D objects using a Bayesian framework. The main
limitations of these systems are that they require CAD models of the objects and that
the simulations are not as realistic as they should be. Costa and Shapiro [11] and Pope
and Lowe [34] have addressed these problems in part by learning segmentations using
real images.

More recently, Murase and Nayar [29] proposed a parametric eigenspace representa-
tion for the learning, recognition, and pose estimation of rigid objects. In this approach
large sets of images obtained by varying pose and illumination in small increments are
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compressed using a Karhunen-Loeve expansion. Variations on object appearance due
to translation and scaling, on the other hand, are taken care of by normalizing the im-
age size using the bounding box of the object, at both training and recognition times.
In [28] Mundy et al. presented an experimental comparison between the appearance-
based method of Murase and Nayar (SLAM) and two geometric model-based recognition
methods described in [36] (Lewis) and [44] (Morse). This study concluded that the two
approaches complement each other. Appearance models have the advantage that they
do not require formal models to describe objects, while geometric approaches rely on
formal models to derive pose-invariant properties. The major drawbacks of using object
appearance are that i) it is very sensitive to segmentation, in particular occlusion; ii) it
does not lend itself well to object categorization; and iii) incidental variations in appear-
ance such as texture or surface albedo must be modeled as separate objects. The major
drawback of the geometric approach is that it is not robust to minor variations of the
hard constraints imposed on the image geometry.

Lately, the appearance-based approach has received increasing attention [26, 24]. In
particular, there has been a significant effort devoted to overcoming the problems caused
by occlusion and background clutter. In spite of these efforts, no satisfactory solution
has been found to handle occlusion without limiting the scale of the problem (number of
objects). In [26], for example, a robust method of computing the coefficients to project an
image into the parametric eigenspace is presented. This method extracts the coefficients
by considering subsets of image points with a hypothesize-and-test paradigm and selecting
the best hypothesis by using the MDL principle. As a result, the coefficients are robust
to image outliers and in particular to occlusion. However, a major problem with this
technique is that it cannot handle object translation and scaling. This is because this
approach works only if the dimensions of the training and testing images are equal,
and the pixel locations of the object do not change at recognition time. Unfortunately,
occlusion has a direct impact on the object’s bounding box, preventing the use of image
size normalization in this case. In [4] an extension of this technique using multiresolution
matching was proposed to handle object scaling. Although this technique is successful
in finding objects at different scales, it is very time-consuming. Krumm [24] proposed
handling occlusion by using small neighborhoods as features. Although this technique
can handle object translation, it also suffers from the scaling problem — i.e., it assumes
that the object size in the image is the same at recognition and training time.

It should be noted that the representation proposed in this paper is related to the
appearance-based representation proposed by Murase and Nayar. However, the use of
appearance-based parts and relations improves the representation’s robustness to seg-
mentation problems and occlusion without compromising scaling or the ability to handle
free-form objects. This is accomplished by using local rather than global appearances.
Furthermore, the proposed representation is well suited to grouping together “similar”
parts into categories, allowing several objects to share parts, as shown in [7].

2.1 Parts from Images

It is commonly accepted that complex objects can be decomposed into simple parts.
However, there is not much agreement on how to define what a partis. Several definitions
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have been proposed in the past, including operational definitions (parts are what a part
detector finds), view-based definitions (parts are defined by local image properties), and
geometric definitions (parts are defined by 3D events) [17].

We believe that a definition of a part must take into account the segmentation algo-
rithms that will be used to extract the parts from the images. In particular, we believe
that a part definition should be used in the same way at the learning and recognition
stages. Thus, we have opted for the following definition:

Parts are polynomial surfaces approximating closed, non-overlapping im-
age regions that optimally partition the image in a minimum description

length (MDL) sense.

The MDL principle is a formalization of Ockham’s razor: “the simplest model ex-
plaining the observations is the best.” We have chosen an MDIL-based definition for the
following reasons:

1. The MDL principle has a strong theoretical grounding;

2. Using MDL does not require arbitrary parameters, and thus parts can be extracted
in a consistent manner;

3. The MDL objective function is formulated such that statistics are tested inside the
regions and such that the resulting regions have homogeneous intensity (color or
texture) properties;

4. Finally, algorithms using fast incremental computations are available [21].

(b)

Figure 1: (a) Object ”C-cube”. (b) Parts obtained using an MDL-based segmentation
algorithm.

The MDL principle has been applied to image segmentation [21, 25, 43] by setting up
an objective function whose global minimum corresponds to the simplest description of
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an image segmentation, and hence the best segmentation. The MDL objective function
that we use is the one proposed in [21] resulting from describing an image segmentation
as a collection of regions modeled as polynomial surfaces of variable degree, perturbed
by zero-mean Gaussian noise and whose boundaries are encoded using a chain code
representation. Although this model works best for constant-albedo regions, it can be
easily adapted to textured regions by using a set of texture filters like the ones used by
Zhu and Yuille in [43].

Let Q = {w;} denote the image segmentation into regions {w; } and let Y represent the
image data. Further, assume that the image comes from a stochastic process that can be
characterized as a polynomial gray scale surface of unknown degree plus Gaussian noise
described by a vector of parameters 3. Then, the MDL objective function to optimize is
given by

L(Y.9,8) = L(©) + L(BI0) + L(V|0, 8). 1)
where the first term 1s the length of encoding the region boundaries, the second term
is the length of encoding the parameters, and the last term is the length of encoding
the residuals. If the boundaries are encoded using their chain code representations,
assuming that at each point the number of possible directions is 3 (i.e. the number of
adjacent grid points, excluding the current one), the first term of the encoding cost can
be approximated by [35]

L) = (lilog 3 + log*(I;) + log(2.865064))

k3

where [; is the length of the boundary ¢ and log™(z) = log x 4 loglog = + log loglog = + . ...
(where the sequence stops when the terms become negative). The second cost term,
L(3|2), can be expressed using Rissanen’s [35] expression for optimal-precision analysis
that says that K independent real-valued parameters characterizing n data points can

be encoded using (K/2)logn bits. Thus,
1 .
L([ﬂﬂ) = 5 Z [Xﬁ] 10g n;
-

where Kp, is the number of free parameters describing region j and is a function of the
polynomial degree to be determined, and n; is the number of pixels in region j. Finally,
the third cost term L(Y'|Q, 3) can be written using Shannon’s theorem [1] as

L(Y|Q,8) = —logp(Y|Q, 8) = > _ —log p(Y;|5;)

J

Figure 1(a) shows an image where the object “C-Cube” has been thresholded from
the background, and Figure 1(b) shows the largest parts obtained using the MDL-based
segmentation algorithm described in [21]. Each of the eight parts is shown in a separate
image.

2.2 Appearances of Parts

Obviously, parts obtained using the definition given above are sensor- and illumination-
dependent. Thus, in order to completely characterize an object for different sensors and
light sources, we introduce the concept of “appearances” of a part:
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Two parts segmented from two images of the same object obtained with
similar sensor and illumination configurations, are said to be appearances of
the same part if they are judged to have similar polynomial approximations
in similar image locations.

This concept can be formalized as follows. Let w; be a part obtained from an image.
Let Y; be an n; x 1 column vector with the gray scale pixel values in part w;. Let d be the
order of the polynomial used to fit the parts, and m = (d + 1)(d + 2)/2 be the number
of polynomial coefficients. Let ®; be an n; x m matrix of m basis functions for each of
the n; pixels — i.e., products of powers of pixel coordinates. Finally, let ©; be an m x 1
column vector with the optimal regression coefficients for w;. Using these definitions, we
have [21]

Y, =0,0,+ V¥,

where U, is a vector of zero-mean Gaussian noise with covariance 021, and ©); is estimated
by minimizing the fitting error:

e = |[Y: — ;0]

Then, two parts w; and w, obtained from two images of the same object with different,
but similar, sensor and illumination configurations are considered appearances of the
same part w if

1 1
e12 = —|[Y1 — @10, + —||Y2 — ®,0,4] < T
nq N9

and
Ajg = || — paof| < T

where pq and p9 are the centroids of the parts and T, and Ty are given thresholds. Note
that these thresholds can be set according to the estimated noise covariance matrix o2/
and the known difference in sensor locations. Furthermore, this criterion can handle both
over- and under-segmentation problems by assigning more than one part in one frame to
a part in the other frame.

Figures 2(a) and (c) show two images of the object “Lamp” when the camera is
located at the positions corresponding to 20° and 30°. Figures 2(b) and (d) show the
obtained parts, sorted in decreasing order of size. Finally, Table 1 gives the resulting
correspondences (entries of 1) when the above criterion is used. Note that region 2 in
the frame corresponding to 20° is correctly assigned to regions 2 and 6 in the frame
corresponding to 30°.

2.3 Collection of Appearances

The effects of the sensor and illumination configurations on the appearance of a part
are learned by collecting appearances of the same part in sequences of images under
all possible configurations. Appearances of a part can be easily tracked through frames
by using the matching criterion presented in the previous section. However, a tracking
algorithm must also take into consideration that due to self-occlusion, and under- and
over-segmentation problems, a part may disappear, split into several parts or merge with
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(a) (b

)
1 2 4 5 6

3
() (d)

Figure 2: Appearances of parts. (a) Image of object “Lamp” with camera at 20°. (b)
Parts segmented from (a). (c¢) Image of the same object with camera at 30°. (d) Parts
segmented from (c).

Table 1: Part correspondences for object “Lamp” for views at 20° and 30°.

Lamp 30°

Parts 1‘2‘3‘4‘5‘6
1(41]0]0]0]0]|0
2{0]1]1010(0]1

200131010100 |1]0
4010(0(1(0]0]0
5(0]0]0|11010

others. Figure 3 represents a sequence of appearances of a part through ten different
frames, f0, f1,..., f9. The numbers between the arrows in the figure correspond to the
part size numbers in the different frames (the larger the number, the smaller the part),
and the arrows link the appearances from one frame to the next. In this example, the
part being tracked splits into two parts in frame f3, merges back into a single part in
frame f5, only to split again in frame f6 and to merge back in frame f8. Thus, it is fair
to ask whether this part should be considered as one or two parts. We have chosen the
majority rule criterion: if the number of frames where the tracked part is split is larger
than half of the number of frames, it is decided that these are the appearances of two
parts and that under-segmentation has occurred in the remaining frames; on the other
hand, if the number of frames where the part is split is less than 50% of the frames,
as in this example, it is decided that it is indeed a single part with over-segmentation
occurring at the split frames. Note that whenever it is decided that there is a case of
under-segmentation it is assumed that parts are being merged, and hence are sharing
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Figure 3: Example of splits and merges of appearances of a part through ten frames
f0, fi,..., fo. The part being tracked splits into two in frame f3, merges back into a
single part in frame f5, only to split again in frame fg and merge back in frame fs.

appearances in some of the frames.

Figures 4 and 5 illustrate the appearances of parts of two objects, “HoleCube” and
“Lamp”. Figures 4(a) and 5(a) show images of these objects every 30° and Figures 4(b)
and 5(b) show their respective MDL segmentations. Figures 4(c) and 5(c) show the
appearances of five parts of each object. Note that due to self-occlusion, four of the parts
of “HoleCube” disappear in some frames, and that due to segmentation problems the
second and third parts of “Lamp” share appearances.

2.4 Appearance-Based Parts

The groups of appearances can be compactly stored and efficiently retrieved by construct-
ing parametrized manifolds interpolating the projections of the individual appearances
into eigenspaces obtained by applying the Karhunen-Loeve (K-1.) compression method
[31] to a scale- and brightness-normalized set of appearances.

Consider a collection of training appearances, Y1, Y, ..., Y, that have been scale- and
brightness-normalized — i.e., their bounding boxes have been scaled to be N = Ny x N,
pixels and their gray values have been scaled such that the N x 1 vectors ¥; have unit
length, ||Y;||=1,:=1,...,n. Let @ be the N X n matrix

Q=M Y|V, -Y]...|V, - Y]

where Y is the mean value of the training appearances, and let S be the N x N covariance
matrix

S =QQ"

Then, using the K-L reduction method, an appearance Y can be expressed as a lin-
ear combination of M << N eigenvectors of the covariance matrix S of the training
appearances:

Y~Y=Y4+EC

where F is an N x M matrix of the eigenvectors of the covariance matrix S with the
largest M eigenvalues, and C' = ET(Y —Y) is an M x 1 vector of coefficients.

Since only a limited number of actual appearances are used during training, interme-
diate appearances are interpolated between them to obtain a more dense representation.
These interpolated appearances, together with the projections of the training ones, form
manifolds in the M-dimensional eigenspace spanned by F. These manifolds are like the
ones proposed in [29], which have been shown to be successful when used to recognize
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Table 2: ABP Database Sample. The ABPs of each object are represented by one of
their appearances.

Object ABPs Representatives

-1
MEEEE

and locate isolated objects. However, until now they have been used to represent ap-

pearances of complete objects and therefore have failed in the presence of occlusion. In
this paper, we propose to use this type of representation with parts, taking advantage of
their good localization properties while addressing the occlusion problem. Formally, we
define appearance-based parts:

An appearance-based part (ABP) is a parametrized manifold in a
space spanned by a given set of scale- and brightness-normalized appearances
of parts, representing a collection of appearances of a part, obtained by vary-
ing the viewing conditions within a given space.

ABPs can be easily constructed with the software package SLAM [30] developed at
Columbia University; it only requires having 1) a set of appearances of parts spanning
an eigenspace; and 2) a collection of appearances of parts to obtain the corresponding
manifold. The set used to span the eigenspace can be chosen in many ways. It can be, for
example, the set of all the collections of appearances of parts for a single or several objects.
Table 2 shows representative appearances for the ABPs of three objects, where each of
these ABPs has an associated manifold in the ABP space. Figure 6 (b) shows the first
five eigenvectors of the space spanned by compressing the appearances of the five parts
collected from the object “HoleCube” shown in Figure 6 (a), sorted in decreasing order of
the magnitude of the corresponding eigenvalue. Figure 6 (c) shows an appearance of one
of the parts of this object, and Figure 6 (d) shows the manifold obtained by collecting
appearances of this part, displayed three-dimensionally, for visualization purposes.

2.5 Appearance-Based Relationships

Although it may be possible to identify some objects by recognizing some of their distinc-
tive parts, recognizing most objects requires the use of relations among the parts. This
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(¢)

Figure 6: ABP Representation. (a) Object “HoleCube.” (b) First five eigenvectors of
the space spanned by the ABPs of “HoleCube,” sorted in decreasing order of magnitude
of the eigenvectors. (c¢) One appearance of a part of (a). (d) Manifold corresponding to
the collection of appearances of the parts shown in (c), displayed three-dimensionally for
visualization purposes.

structure can be expressed using attributed relational descriptions [39], reducing the
recognition task to finding an isomorphism or partial isomorphism between the model
and image graphs [41, 15, 16, 40].

The graph representation is well suited to describe relational structure when the
relation is static or quasi-static — i.e. when attributes and relations hold for a sufficiently
large set of viewing conditions® [11]. However, relations between ABPs are not static,
since their attributes as well as their structure change with the viewing conditions. For
example, two ABPs may be adjacent to each other only in a subset of all possible viewing
conditions. Furthermore, their size and their length of common boundary may change for
different viewing conditions within this subset. Thus, attributed relational graphs using
ABPs must change accordingly, making a traditional graph representation cumbersome.
A solution to this problem is to decompose the graph into sub-graphs of relations that
hold for a subset of views and to capture the changes of their attributes and the attributes
of the parts involved (due to variations in viewing conditions) in manifolds similar to the
ones used to describe parts, as explained next.

The reason for using sub-graphs is two-fold: First, sub-graphs restrict the relations to
subsets of parts and make the range of viewing conditions for which relations hold larger.
Second, sub-graphs are a natural choice when performing recognition in the presence of

2An example of a static relation is the adjacency between the legs and top of a table.
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occlusion [5, 11]. Consider two extreme cases: in one case, all of the object except for
one part is occluded; in the other, all of the object is visible. Between these extremes,
a number of cases are possible depending on how many and which of the parts of the
object are visible. While storing all the possible sub-graphs is prohibitive due to the
combinatorics involved, it is possible to store subsets of them, such as pairs and triples of
adjacent parts®. These cases correspond to increasingly larger regions of the object being
visible, and can be considered both as higher-level features and as spatial relationships
between lower-level features. In principle, these more complex features are more sensitive
to occlusion (since they require more than one part being visible). However, they have
higher discriminatory power and provide intermediate levels of representation between
global and atomic approaches.

Once the subsets of viewing conditions for which the relations hold are identified, it is
possible to apply the Karhunen-Loeve compression method to subimages containing only
the parts involved in the relations. These subimages can then be compactly stored and
efficiently retrieved by constructing parametrized manifolds interpolating their projec-
tions in a lower-dimensional eigenspace. These manifolds capture the appearance of the
relations for the different views within the sets for which they hold, and thus are called
Appearance-Based Relations (ABRs). Table 3 shows representative appearances for the
ABRs of three objects when the adjacency relation between pairs of regions is used.

3 Object Recognition

The ABPs and ABRs described above can be used in a relational matching framework
as the basis for an object recognition system. Let ABP and ABR represent the sets of
ABPs and ABRs, respectively, for all the objects in a given database. Then the object
database can be represented by a set of relational descriptions

DB = {D1,...,Dy}

where

D,, = {R1, Ry}
is the relational description for object m,
Ry ={P~,..., P} C ABP
is the set of all the ABP manifolds, P;, : = 1,...,mq, belonging to model m, and
Ry ={Ri,...,Rn,} CABR

is the set of all the ABR manifolds, R;, ¢ = 1,...,mq, belonging to model m. The set R}
is a unary relation of parts, while the set RJ* is a binary relation between parts — i.e.
Ri=(P,,P,),i=1,...,mq, 1 <iy,i3 < my. For example, the relational description of
the object “HoleCube” is formed by a relation R; comprised of all the ABPs shown in

3This is analogous to the use of junctions of curves in approaches using curve segments as the main
representation feature.
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Table 3: ABR Database Sample. The ABRs of each object are represented by one of

their appearances.

Object ABRs Representatives

the first row of Table 2 and a relation Ry comprised of all the ABRs shown in the first
row of Table 3.

An MDL segmentation of an image can be described using a similar relational repre-
sentation

D; = {51, 52}
where
81 = {plv"'vpnl}

is a unary relation formed by a set of projections of parts or image regions into the ABP
eigenspace, and where

So={r1,...,rn,}

is a binary relation formed by a set of projections of pairs of adjacent parts into the ABR
eigenspace.

The main difference between these representations is that the description of an object
is made in terms of ABPs and ABRs — i.e., collections of appearances — while the de-
scription of an image segmentation is made of a particular instance of these appearances.

An image is an observation of a subset of the models. Then, the recognition problem
is to find two unknown correspondence mappings

hABp : 81 — ABP
14



hABR : 82 — ABR

associating ABPs and ABRs with image regions and pairs of regions, respectively, and
the localization problem is to find two unknown correspondence mappings

lapp @ &1 — RY

ZABR . 82 —>R;n

associating appearances of ABPs and ABRs with image regions and pairs of image re-
gions, respectively.

The mappings happ and hsppr represent a set of ABP and ABR identity hypotheses
while the mappings [4pp and [4pr represent a set of ABP and ABR pose hypotheses.
These hypotheses constrain each other and can be generated by projecting each seg-
mented (or pair of adjacent) region(s) into the ABP (ABR) eigenspace, and finding the
closest points on the closest manifolds to this projection. While the closest manifolds
provide hypotheses for the identity mapping, the closest point on each manifold provides
a hypothesis for the localization problem.

Let r be the projection of a pair of adjacent image regions with projections p; and
p2 and let hapr(r) = R € RY and l4pr(r) = ar € R be its ABR identity and pose
hypotheses, respectively. If the ABP hypotheses for p; and py, happ(p1) = Pi and
hagp(pz) = P2, are such that P, P, € R and R = (P1, P») we say that the ABR
hypothesis for r is compatible or verifies the ABP hypotheses for p; and p;. Furthermore,
if the ABP identity hypotheses are compatible with the ABR hypothesis and the ABP
pose hypotheses for p; and pq, lapp(p1) = ap, € P1 and lapp(p2) = ap, € P,, are such
that ap, and ap, correspond to the same pose, we say that the ABR pose hypothesis for
r is compatible with or verifies the ABP pose hypotheses for p; and ps.

Finally, let d(p,q) represent a distance metric between two points p and ¢ in a
given eigenspace and let the distance between a point p and a manifold M be de-
fined as the distance between the point p and the closest point to p on the mani-
fold, d(p, M) = mingenm d(p,q). Then, the distances between the projections of the
image regions and pairs of regions and the corresponding manifolds and appearances
d(p,hasp(p)), d(r,hasr(r)), d(r,lagr(r)), and d(p,lagp(p)) are quantitative measures
of the goodness of these hypotheses, where the smaller the distance, the better the match.

4 Experiments and Results

In this section we describe a set of experiments to illustrate the potential of the proposed
representation for successful object recognition in the presence of occlusion and clutter.
For these experiments, a very simple-minded strategy was used to generate hypotheses:
those ABP hypotheses with distance d = d(p, hagp(p)) < Ty, where Ty is a “small”
threshold, were taken as successful hypotheses. Other ABP hypotheses with somewhat
larger distances Ty < d < Ty, where T; is a second threshold, were verified or discarded by
using ABR hypotheses. Finally, an ABR hypothesis for a pair of image parts r = (p1, p2)
was said to verify the ABP hypotheses for the component parts p; and p; if the distance
d(r, hapr(r)) < T3, where Tj is a third threshold.
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Figure 7: Object Database.

Figure 7 shows images of the objects in our current database. The ABP database
corresponding to these objects has a total of 110 ABPs and the ABR database has a
total of 130 ABRs.

4.1 Qualitative Results

Examples of cluttered scenes with busy backgrounds are shown in Figure 8. The first
column shows the original images, the second column shows their MDL segmentations,
and the following columns show the appearances of the ABPs and ABRs that were
hypothesized and verified by the above strategy, shown at the hypothesized pose. When-
ever an ABP is shown, the object was identified based only on a “distinctive” ABP
(d(p,hagp(p)) < T1). Whenever an ABR is shown, the object was identified by veri-
fying two ABP hypotheses using an ABR (T} < d(p1, hasp(p1)), d(p2, hap(p2)) < To;
d((p1,p2), har((p1,p2))) < T3). It is seen that, in spite of the occlusion between the
objects and segmentation problems such as the merging of some of the object parts with
the background, all the objects and their poses are correctly identified.

4.2 Quantitative Results

While the examples shown above provide anecdotal evidence that our representation is
capable of handling occlusion and segmentation problems, they do not provide quantita-
tive data to characterize its performance. The most common tool used to present data
characterizing the performance of a detection algorithm is a plot of its probability of
misdetection versus its probability of false alarm, as some tuning parameter (threshold)
is varied [22]. This plot is commonly known as the “receiver operating curve” or ROC
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for short. Next, we describe two sets of experiments that were designed to obtain data to
characterize the performance of ABP and ABR detection using ROCs. In the first set of
experiments, the effect of occlusion on the recognition of individual parts was studied. In
the second set of experiments, the performance of the recognition strategy was quantified
for a set of real scenes, as the three thresholds T, T, and T5 were varied.

4.2.1 Performance Characterization of ABP and ABR Recognition

Experiments to characterize the effect of occlusion on ABP and ABR recognition were
conducted by randomly selecting an appearance of an ABP or ABR from the database,
and randomly occluding a percentage of its bounding box area with the appearance
of another ABP, also randomly selected. Figure 9 illustrates the synthetic occlusion
generation applied to an appearance of an ABP.

The projection of the occluded region(s) was assigned the closest manifold in the
database. If the distance between this projection and the manifold was larger than a
threshold T', it was said that the experiment resulted in a misdetection. If this distance
was less than the threshold 7', but the assigned manifold was not the one corresponding
to the true (known) identity of the region(s) being used, it was said that this was a false
alarm. Otherwise, it was said that the projection was correctly identified. Figures 10 (a)
and (b) show plots of false alarms versus misdetections for ABPs and ABRs, respectively.
The experiments were done for 10,000 occluded pairs, with occlusions ranging between
10% and 50%, as the threshold 7' varied from 0.015 to 0.15. It is seen that ABPs and
ABRs are affected in a similar way when the occlusion is small (10%). On the other hand,
ABPs are more sensitive than ABRs when the percentage of occlusion increases, and this
sensitivity increases with the level of occlusion. This can be explained by the fact that
the shapes of ABRs tend to be more irregular and distinctive than the shapes of ABPs,
and thus are easier to identify when the amount of occlusion increases. It should also
be noted that the performance could be significantly improved by obtaining the region
projections using a robust technique such as the one proposed in [26] instead of using
least squares as we did.

4.2.2 Performance Characterization of the Recognition Strategy

Figures 11 (a) and (b) show images of two scenes with three objects from the database,
set up on top of a rotating table. In order to study the performance of the recognition
strategy, twelve images of each scene, from different points of view, were taken by rotating
the table in increments of 30 degrees. Let C' be the number of extracted image parts that
belong to the clutter but are incorrectly identified as object parts, and D and M be the
number of parts that belong to one of the objects in the database and that are correctly
identified or missed by the recognition strategy, respectively. The system performance
can be characterized in terms of recall and precision?. The system recall is measured
by the ratio between the number of ABPs correctly identified and the number of ABPs

4Precision and recall are standard evaluation metrics used in the information retrieval community

37].
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present in the image:

D
Recall = WD
and the misdetection rate is defined as the ratio
M
MD = M+D = 1 — Recall.

The system precision, on the other hand, is measured by the ratio between the number
of correctly identified object parts and the total number of identified parts:

D
C+D

Precision =

and the false alarm rate is defined as the ratio

B C
- C+D

FA = 1 — Precision.

Figure 11 (c) shows plots of false alarms vs. misdetections of ABPs as the thresholds
Ty, T5 and T3 are varied. The plot for T, = T3 = 0 shows the performance of the system as
Ty varies between 0 and 0.08, when only ABPs are used. In this case, the best performance
is attained for 77 = 0.03 with a false alarm rate of 0.098 and a misdetection rate of 0.111.
Setting T to the value corresponding to 0 ABP misdetections, 0.08, and using ABRs to
verify ABP hypotheses with a threshold 75 = 0.05 improves the performance to a false
alarm rate of 0.103 and a misdetection rate of 0.093, when 77 = 0.03. Finally, setting
both T, and T3 to 0.08 further improves the performance to a false alarm rate of 0.082 and
a misdetection rate of 0.085, with 77 = 0.02. Thus, it is seen that a simplistic recognition
strategy using ABPs and ABRs, like the one suggested here, results in relatively low
false alarm and misdetection rates (less than 10%). This performance can be improved
by using more sophisticated strategies, such as allowing multiple hypotheses to compete
in a Bayesian framework [7], and using robust projection algorithms [26] to generate ABP

and ABR hypotheses.

5 Conclusion

In this paper we introduced a new object representation using appearance-based parts
(ABP) and relations (ABR). ABPs and ABRs are defined based on the MDL principle and
are automatically learned from collections of images without requiring ad hoc parameters.
They capture not only local shape but also intrinsic reflectance properties, pose in the
scene and illumination conditions. Furthermore, ABPs and ABRs are compactly stored
using an eigenspace representation parametrized by pose and illumination. Thus, the
proposed representation can be used with generic objects and it is robust to occlusion
and segmentation variations. The usefulness of the representation was illustrated by
qualitative as well as quantitative experiments. Qualitative examples showed that the
representation can be used to identify and localize objects in scenes with significant levels
of clutter and partial object occlusion, in spite of segmentation errors. Quantitative
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results for the sensitivity of the ABP and ABRs to occlusion and their usefulness for
object recognition were provided using receiver operating curves (ROCs). The sensitivity
of the ABPs and ABRs to occlusion was characterized as the level of occlusion was
increased. It was seen that, in general, ABRs are less sensitive to occlusion than ABPs.
The performance of a simplistic object recognition strategy based on ABPs and ABRs and
three thresholds was also characterized as the values of these thresholds were varied. It
was shown that the misdetection and false alarm rates are lower when ABPs and ABRs
are used instead of only ABPs, thus illustrating the power of the representation, and
in particular the use of the appearance-based relations. Finally, since the experiments
described here used a very simplistic recognition strategy, it is expected that better
performance could be attained by using a more sophisticated recognition strategy where
multiple hypotheses are allowed to compete in a Bayesian framework [7].

6 Acknowledgments

The authors would like to thank Dr. Nayar and Mr. Nene of Columbia University for
providing the SLAM software library and their help in using it; Dr. Kao for some of
the test objects; and Dr. Rosenfeld of the University of Maryland for comments. C. Y.
Huang and O. I. Camps were supported in part by NSF grants IRI-93-09100 and IRI-97-
12598. T. Kanungo was supported in part by the Department of Defense and the Army
Research Laboratory under Contract MDA 9049-6C-1250.

References

[1] N. Abramson. Information Theory and Coding. McGraw-Hill, 1963.

[2] F. Arman and J. K. Aggarwal. CAD-based object recognition in range images using
pre-compiled strategy trees. In A. K. Jain and P. Flynn, editors, Three-Dimensional
Object Recognition Systems, pages 115-134. Elsevier Science Publishers, 1993.

[3] T. O. Binford. Body-centered representation and perception. In Lecture Notes
in Computer Science (994): Object Representation in Computer Vision. Springer-
Verlag, 1995.

[4] H. Bischof and A. Leonardis. Robust recognition of scaled eigenimages through a
hierarchical approach. In Proc. IEEE Conference on Computer Vision and Paltern
Recognition, pages 664-670, Santa Barbara, CA, June 1998.

[5] R. C. Bolles and R. A. Cain. Recognizing and locating partially visible objects: The
local-feature-focus method. Int. Journal of Robotics Research, 1(3):57-82, 1982.

[6] O. 1. Camps. Towards a robust physics-based object recognition system. In Lec-
ture Notes in Computer Science (994): Object Representation in Computer Vision.
Springer-Verlag, 1995.

[7] O.1. Camps, C. Y. Huang, and T. Kanungo. Hierarchical organization of appearance
based parts and relations for object recognition. In Proc. IEEE Conference on

19



[12]

Computer Vision and Pattern Recognilion, pages 685691, Santa Barbara, CA, June
1998.

O. I. Camps, L. G. Shapiro, and R. M. Haralick. Image prediction for computer
vision. In A. K. Jain and P. Flynn, editors, Three-dimensional Object Recognition
Systems. Elsevier Science Publishers, 1993.

O. I. Camps, L. G. Shapiro, and R. M. Haralick. A probabilistic matching algorithm
for computer vision. Annals of Mathematics and Artificial Intelligence, 10(1-2):85—
124, 1994.

C. Chen and P. Mulgaonkar. Automatic vision programming. CVGIP: Image Un-
derstanding, 55(2):170-183, 1992.

M. S. Costa and L. G. Shapiro. Scene analysis using appearance-based models and
relational indexing. In International Symposium on Computer Vision, pages 103—

108, Coral Gables, FL., November 1995.

S. J. Dickinson. Part-based modeling and qualitative recognition. In A. K. Jain and
P. Flynn, editors, Three-Dimensional Object Recognition Systems, pages 201-228.
Elsevier Science Publishers, 1993.

S. J. Dickinson, A. P. Pentland, and A. Rosenfeld. 3D shape recovery using dis-
tributed aspect matching. IFEE Trans. on Pattern Analysis and Machine Intelli-
gence, 14(2):174-198, 1992.

W. E. L. Grimson, T. L. Poggio, S. J. White, and N. Noble. Recognizing 3D objects
using constrained search. In A. K. Jain and P. Flynn, editors, Three-Dimensional
Object Recognition Systems, pages 259-284. Elsevier Science Publishers, 1993.

R. M. Haralick and L. G. Shapiro. The consistent labeling problem 1. IEFEE Trans.
on Pattern Analysis and Machine Intelligence, 1(2):173-184, 1979.

R. M. Haralick and L. G. Shapiro. The consistent labeling problem I1. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 2(3):193-203, 1980.

M. Hebert, J. Ponce, T. Boult, and A. Gross. Report on the 1995 Workshop on 3D
Object Representations in Computer Vision. In Lecture Notes in Computer Science
(994): Object Representation in Computer Vision. Springer-Verlag, 1995.

C. Y. Huang, O. I. Camps, and T. Kanungo. Object recognition using appearance-
based parts and relations. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pages 877-883, San Juan, Puerto Rico, June 1997.

D. Huttenlocher. Recognition by alignment. In A. K. Jain and P. Flynn, edi-
tors, Three-Dimensional Object Recognilion Systems, pages 311-326. Elsevier Sci-
ence Publishers, 1993.

20



[20]

[21]

[22]

23]

[24]

[29]

[30]

31]

32]

A. K. Jain and P. J. Flynn, editors. Three-Dimensional Object Recognition Systems.
Elsevier, 1993.

T. Kanungo, B. Dom, W. Niblack, and D. Steele. A fast algorithm for MDIL-based
multi-band image segmentation. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, pages 609-616, Seattle, WA, June 1994.

T. Kanungo, M. Y. Jaisimha, J. Palmer, and R. Haralick. A methodology for quan-
titative performance evaluation of detection algorithms. [EFEE Trans. on Image

Processing, 4(12):1667-1674, 1995.

D. Kriegman and J. Ponce. Representations for recognizing complex curved 3D
objects. In Lecture Notes in Computer Science (994): Object Representation in
Computer Vision. Springer-Verlag, 1995.

J. Krumm. Eigenfeatures for planar pose measurement of partially occluded objects.
In Proc. IEEFE Conference on Computer Vision and Pattern Recognition, pages 55—
60, San Francisco, CA, June 1996.

Y. Leclerc. Region grouping using the minimum description length principle. In
Proc. DARPA Image Understanding Workshop, pages 473-479, Pittsburgh, PA,
Sept. 1990.

A. Leonardis and H. Bischof. Dealing with occlusions in the eigenspace approach. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 453—
458, San Francisco, CA, June 1996.

D. Metaxas. A physics-based framework for segmentation, shape and motion es-
timation. In Lecture Notes in Computer Science (994): Object Representalion in
Computer Vision. Springer-Verlag, 1995.

J. Mundy, A. Liu, N. Pillow, A. Zisserman, S. Abdallah, S. Utcke, S. Nayar, and
C. Rothwell. An experimental comparison of appearance and geometric model based
recognition. In Lecture Notes in Compuler Science (1144): Object Representalion
in Computer Vision II. Springer-Verlag, 1996.

H. Murase and S. K. Nayar. Visual learning and recognition of 3D objects from
appearance. International Journal of Computer Vision, 14(1):5-24, 1995.

S. Nene, S. K. Nayar, and H. Murase. SLAM: Software Library for Appearance
Matching. Technical Report CUCS-019-94, Department of Computer Scienece,
Columbia University, 1994.

E. Oja. Subspace methods of Pattern Recognition. Research Studies Press, Hertford-
shire, UK, 1983.

A. Pentland and S. Sclaroff. Closed-form solutions for physically based shape mod-
eling and recognition. IKKEFE Trans. on Pattern Analysis and Machine Intelligence,
13(7):715-729, 1991.

21



33]

[40]

[41]

[42]

[43]

[44]

J. Ponce, A. Zisserman, and M. Hebert. Report on the 1996 International Workshop
on Object Representation in Computer Vision. In Lecture Notes in Computer Science
(1144): Object Representation in Computer Vision II. Springer-Verlag, 1996.

A. R. Pope and D. G. Lowe. Learning appearance models for object recognition.
In Lecture Notes in Computer Science (1144): Object Representation in Computer
Vision II. Springer-Verlag, 1996.

J. Rissanen. A universal prior for integers and estimation by minimum description

length. The Annals of Statistics, 11(2):211-222, 1983.

C. A. Rothwell. Object Recognition through Invariant Indexing. Oxford Univeristy
Press, 1995.

G. Salton and M. E. Lesk. Computer evaluation of text indexing and text processing.
Journal of the Association for Computing Machinery, 15(1):8-36, 1968.

S. Sclaroff and A. P. Pentland. Modal matching for correspondence and recognition.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(6):545-561, 1995.

L. Shapiro, J. D. Moriarty, R. M. Haralick, and P. G. Mulgaonkar. Matching three-
dimensional objects using a relational paradigm. Pattern Recognition, 17(4):385-405,
1984.

L. G. Shapiro and R. M. Haralick. Structural descriptions and inexact matching.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 3(5):504-519, 1981.

J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the Association
for Computing Machinery, 23(1):31-42, 1976.

M. Zerroug and G. Medioni. The challenge of generic object representation. In Lec-
ture Notes in Computer Science (994): Object Representation in Computer Vision.
Springer-Verlag, 1995.

S. C. Zhu and A. Yuille. Region competition: Unifying snakes, region growing, and
Bayes/MDL for multiband image segmentation. IEEE Trans. on Patlern Analysis
and Machine Intelligence, 18(9):884-900, 1996.

A. Zisserman, D. Forsyth, J. Mundy, C. Rothwell, J. Liu, and N. Pillow. 3D object
recognition using invariance. Al Journal, 78(1-2):239-288, 1995.

22



EEICE

HSVivivivi

>
-
il
P
B
9
3

e

—~
O
~—

~—

Figure 8: Results for cluttered scenes. (a) Cluttered scenes. (b) MDL segmentations.

(c) ABP and ABR hypotheses.
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Figure 9: Image occlusion process using another image frame in the database.
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ROC for ABP occlusion by a part
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Figure 10: (a) False alarm and misdetection of ABPs when occluded by another part, for
different levels of occlusion. (b) False alarm and misdetection of ABRs when occluded
by a part, for different levels of occlusion.
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ROC for rotating scences

0.25-
kG
¥———% | T2=0,T3=0
0.2t
% - — - % & T2=0.08, T3=0,05
o- - - © | T2=0.08, T3=0,08
\
c 015 %
S
3
Q
3
o
L2
Z o1t
0.05}
0 1 |
0 0.05 0.1 0.15 0.2 0.25

False Alarm
(c)

Figure 11: False alarm versus misdetections for rotating scenes shown in (a) and (b).
(c) False alarm and misdetection when Ty, T, and T3 are varied. It is seen that using
ABRs to verify ABP hypotheses (T = 0.08,75 = 0.05 and Ty = 0.08,75 = 0.08) results
in better performance than using ABPs alone (T, = 0,75 = 0).

26



